

Reg. No.:....

Name :

Third Semester B.Tech. Degree Examination, December 2015 (2008 Scheme)

Branch : Electronics & Communication Engineering 08.306 : DIGITAL ELECTRONICS (T)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions. Four marks each.

- 1. Using Dc Morgan's Theorems, find the equivalent to F = ab + ac.
- 2. Find the minimal POS using k-map $P = \pi$ (0, 2, 5, 7, 8, 10, 13, 15)
- 3. Write VHDL programme for a half adder.
- 4. What are the input and output logic levels of CMOS?
- 5. What are the advantages of edge triggered flip flops over level triggered one?
- 6. Distinguish between positive and negative logic.
- Design a monostable multivibrator using 74121 to obtain a pulse of width 100 ms.
 Draw the circuit diagram.
- 8. Draw a asynchronous machine model and explain.
- 9. What are races and cycles that exist in asynchronous machines?
- 10. What are the guidelines for making a state assignment?

PART-B

Answer any 2 questions from each Module. Each question carries 10 marks.

Module - 1

- 11. Using Quine Mc Cluskey method, simplify $F = \sum (1, 3, 13, 15) + \sum d (8, 9, 10, 11, 12)$
- 12. Design a 2 digit BCD adder using 74LS83.
- 13. a) Design and implement a 3 bit look ahead carry adder.
 - b) What are the differences between static RAM and Dynamic RAM?

Module - 2

- 14. a) Explain the operation of a ECL OR/NOR gate.
 - b) What are the applications of open collector gates?
- 15. Design a counter to count the sequence 3-2-5-7-6-3.
- , 16. a) Draw the circuit of a 5-bit ring counter and explain its working.
 - b) What is race-around condition? How it can be eliminated?

Module - 3 pol horus one from arrows in

- 17. a) Define state variable and excitation variable with example.
 - b) Explain the steps for synchronous sequential circuits analysis.
- Create a shared row state assignment for the following flow table.

Present State	Next State			
	00	01	10	11 .
а	a	b	a	b
b	С	b	b	b
С	C	d	b	non de s
d	(d)	d	а	d

- 19. a) Explain static hazards, dynamic hazards and essential hazards with examples.
 - b) Design a hazard free combinational circuit " $f = \Sigma$ (0, 1, 3, 4, 5, 12, 13)